

Linux RFS v1.3.0 Porting Guide

 May 20-2008, Version 1.13

Copyright notice

Copyright 200ⓒ 8 Flash Software Group, Samsung Electronics, Co., Ltd..

All rights reserved.

Trademarks

RFS is trademark of Flash Software Group, Samsung Electronics Co., Ltd.. in Korea and other
countries

Restrictions on Use and Transfer

All software and documents of RFS are commercial software.

Therefore, you must install, use, redistribute, modify and purchase only in accordance with the
terms of the license agreement you entered into with Flash Software Group, Samsung Electronics
Co., Ltd.

All advertising materials mentioning features or use of this software must display the following
acknowledgement:

“This product includes RFS written by Flash Software Group, Samsung Electronics Co., Ltd.”

Contact Information:

 Flash Software Group

Samsung Electronics Co., Ltd
Address: San #16 BanWol- Dong, Hwasung-City,

Gyeonggi-Do, Korea, 445-701

I Linux RFS v1.3.0 Porting Guide

II Linux RFS v1.3.0 Porting Guide

Preface
SEC-FSG-RFS1.2-POG

 This document is a porting guide of RFS developed by Flash Software Group, Memory
Division, Samsung Electronics. It describes Linux RFS porting procedure to user's target platform.

Purpose
 This document is RFS Porting Guide. This document explains the definition,
 architecture, system requirement, and porting tutorial of RFS. This document also
 provides the features and API of each module that a user should know well to port RFS.
Combine the above two paragraphs for one into a meaningful one

Scope
 This document is for Project Manager, Project Leader, Application Programmers, etc.

Definitions and Acronyms

FTL (Flash
Translation Layer)

A software module which maps between logical
addresses and physical addresses when accessing to
flash memory

IDE Integrated Development Environment
CRAMFS Compressed ROM File System

RFS Robust FAT File System
VFS Virtual File System
XSR eXtended Sector Remapper
MTD Memory Technology Device
LLD Low Level Device Driver

Sector The file system performs read/write operations in a
512-byte unit called sector.

Page NAND flash memory is partitioned into fixed-sized
pages. A page is (512+16) bytes or (2048 + 64) bytes.

Block NAND flash memory is partitioned into fixed-sized
blocks. A block is 16K bytes or 128K bytes.

NAND flash device NAND flash device is a device that contains NAND flash
memory or NAND flash controller.

NAND flash memory NAND-type flash memory
Deferred Check

Operation
The method that can increase time and device
operation performance. Every operation function of LLD
defers the check routine to the next operation.

OneNAND Samsung NAND flash device that includes NAND flash
memory and NAND flash controller.

Related Documents

 - RFS v1.3.0 Programmer’s Guide, Samsung Electronics, Co., Ltd.

 - LinuStoreII Utility Guide, Samsung Electronics Co., Ltd.

 - LinuStoreII Porting Guide, Samsung Electronics Co., Ltd.

History
Version Date Comment Author

0.1 2006.01.05 Initial Flash Software Group
0.8 2006.01.13 1st draft Flash Software Group
1.4 2006.02.13 Release Thomas
1.5 2006.03.16 Release Amit
1.6 2006.03.23 Release Amit
1.7 2006.04.19 RFS1.2.1 release Amit
1.8 2006.05.10 DPM porting added Seung-Jin Jung
1.9 2006.09.27 NLS added Ha-Young Kim
1.10 2006-09-29 H/W int added Kyu-Hyung Kim
1.11 2006.12.26 Review comments Vishu Kumar
1.12 2007.03.19 SAM factor modifications Seung-Jin Jung
1.13 2008-05-20 Change version to 1.3.0

Delete sections about xsr
Hayoung Kim

III Linux RFS v1.3.0 Porting Guide

IV Linux RFS v1.3.0 Porting Guide

Table of Contents

1 Introduction ...1

1.1 Overview ..1
1.2 Features ...1
1.3 Architecture ..1

2 Prerequisites ..4
2.1 Host Environment..4
2.2 Software Environment ..4

2.2.1 Directory Structure of Linux RFS Package..4
2.2.2 Source Files List ..5
2.2.3 RFS Memory Usage ...6

2.3 Hardware Environment ...6
3 Porting Linux RFS ...7

3.1 Porting Overview ..7
3.2 Porting Procedure ...7

3.2.1 Installation of Linux RFS Sources ..7
3.2.2 Kernel Configuration for RFS ...8
3.2.3 Building Linux Kernel and RFS Kernel Module9

3.3 Using the NLS (Native Language Support) ... 12
3.3.1 Kernel Configuration for NLS ... 12
3.3.2 Mounting RFS with codepage ... 14

Appendix ... 16

Tables

Table 1 Host System Requirements ... 4
Table 2 RFS Static Memory Usage (in bytes) .. 6
Table 3 Hardware information of OMAP2420.. 6

V Linux RFS v1.3.0 Porting Guide

VI Linux RFS v1.3.0 Porting Guide

Figures

Figure 1-1 Linux RFS Architecture .. 2
Figure 2-1 Directory Structure of Linux RFS Package .. 4
Figure 2-2 Linux RFS Source Files (Annotated on the Source Tree) 5
Figure 3-1 Linux RFS Porting Procedure.. 7
Figure 3-2 Main screen of Kernel menu .. 8
Figure 3-3 File system screen of Kernel menu .. 9
Figure 3-6 Code maturity level .. 10
Figure 3-7 CRMAFS OPTION Settings .. 11
Figure 3-9 RFS Filesystem configuration for VFAT.. 12
Figure 3-10 NLS(Native Language Support) configuration... 13
Figure 3-11 RFS Filesystem configuration for FAT16 ... 14

1 Introduction
This chapter describes the overview and system architecture of RFS. It also covers the
information about low-level flash memory partitions.

1.1 Overview
Linux RFS (Linux Robust FAT File System) is a FAT compatible file system to use
OneNAND/NAND flash memory as storage on any consumer electronic devices. As its name
implies, Linux RFS runs in the Linux kernel and is fully compatible with FAT file system
standards (FAT16/32). For ‘robustness’, it provides a journaling based error recovery
mechanism, which guarantees that the file system runs at all times even if there is a sudden
power loss.

Currently, there are a few open-source projects that implement NAND based flash file systems
such as JFFS2, YAFFS and YAFFS2. However, they have a limited applicability to brand-new
OneNAND flash memory devices that feature advanced technologies to improve performance.

RFS supports all of the OneNAND flash memory devices in the market and is optimized for those
devices. RFS can deliver much better read/write performance compared to the existing
solutions.

1.2 Features

The following are RFS features.

• FAT compatible file system which supports FAT16/32
• Robust error-recovery system based on journaling
• Provide POSIX-compatible interface
• Supports Linux kernel 2.4.X and 2.6.X (tested on MontaVista Linux)
• Supports demand paging
• Packaged as a loadable kernel module

1.3 Architecture
Figure 1-1 shows typical file system architecture where RFS is used for OneNAND flash memory.
Linux RFS flash file system has been divided into different layers based on their operations. It
consists of following layers: FAT file system layer, flash block device driver layer, sector
translation layer, block management layer, and low level device driver layer.

Low level device driver layer code for OneNANDTM is provided with RFS package and is tested
on OMAP2420 board. For other chipsets, you need to write your own low level driver code. A
brief description about each of these components is given here.

1 Linux RFS v1.3.0 Porting Guide

2 Linux RFS v1.3.0 Porting Guide

Figure 1-1 Linux RFS Architecture

 File Systems

Linux file system for flash devices is managed by two file systems: CRAMFS and RFS. Both of
these file systems run under Linux VFS (Virtual File System).

• CRAMFS: This is a read-only file system included in a standard Linux kernel distribution.
CRAMFS is used to manage the read-only part of Linux file system directories, i.e. execution
code, libraries, and ROM data files. Because CRAMFS supports run-time code decompression,
you can store code in a compressed form, which results in high space efficiency. CRAMFS
runs on top of the BML Block Device Driver.

• RFS: This is a read-write Samsung’s file system and is used to manage the modifiable data
part of the Linux file system directories, i.e. configuration files and applications data files.
It does not support compression feature. RFS runs on top of the STL Block Device Driver.

 XSR Block Device Drivers

Block device drivers are used to provide common block device APIs to file systems. For each of
the block device drivers, separate block device files provide device interface methods like
mount and format to applications. RFS needs two kinds of block device driver interface.

• BML Block Device Driver: This block device driver is used to provide driver functions for
the device files /dev/bml0/*. This block device driver acts right upon the BML. There is no
logical to physical address translation because there is no FTL-like software layer between
BML and this driver layer. For example, logical sector number n directly maps to physical
sector number n. Data write to a sector involves following sequence of low-level flash
operations:

1. Block copy for back-up
2. Block erase
3. Copy back for non-modified pages

4. Writing the sector data to the modified page

These sequences of operations are not atomic, so a write request to this block device driver
is prone to data corruption. For this reason, read-only file systems such as CRAMFS are
adequate to run on top of this block device driver.

• STL Block Device Driver: This block device driver is used to provide driver functions for
the device files /dev/stl0/*, /dev/stl1/* and so on. Since there is FTL between this block
device driver and BML, it is allowed to perform random write requests and write requests
are handled atomically. Thus any read-write file system (e.g. RFS) can run on this block
device driver.

 XSR core
XSR core is composed of two layers: STL (Sector Translation Layer) and BML (Block Management
Layer). STL is a top layer of XSR. BML is below the STL. These layers have different features
and jointly provide block device interface to upper layer. The main features of each layer are
as follows.

• STL (Sector Translation Layer): translates a logical address from the file system into the
virtual flash address. It internally has wear-leveling1 during the address translation.
• BML (Block Management Layer): translates the virtual address from the upper layer into
the physical address. At this time, BML does the address translation in consideration of bad
block and the number of NAND device in use. BML accesses LLD2, which actually performs
read, write, or erase operation, with the physical address.

☞ Note

Each layer of XSR can be operated separately as a module. Thus, STL can be used with
other layer, which has same functionalities with BML.

 OAM (OS Adaptation Module)
OAM is at the right of the figure. OAM connects XSR with the OS. OAM needs to be configured
according to your OS environment to use NAND flash memory. OAM module is already
configured with RFS for Linux.

 PAM (Platform Adaptation Module)
PAM is below OAM. PAM connects XSR with the platform. PAM also needs to be configured
according to your platform to use NAND flash memory.

 LLD (Low Level Driver)
There is a low level device driver between BML and NAND flash memory. It reads, writes, or
erases data on the physical sector address received from XSR and is controlled by BML.

 1 Wear-leveling is an internal operation to use every block of NAND flash memory evenly through the

algorithm. It extends NAND flash memory life span.
 2 LLD is an abbreviation of Low Level Device Driver. It performs actual read/write/erase operation to

NAND flash memory as a device driver.

3 Linux RFS v1.3.0 Porting Guide

4 Linux RFS v1.3.0 Porting Guide

2 Prerequisites
This chapter explains the host/target system environment for porting RFS to your target system.
Host is Linux PC environment and target can be any kind of consumer device using OneNAND
flash memory.

2.1 Host Environment
The following table shows the host system requirements for configuring and building RFS 1.2

Table 1 Host System Requirements

Host Machine PC
Host OS Linux
IDE & Compiler Native GCC compiler & Cross-Compiler
Free Space About 50MB

2.2 Software Environment

2.2.1 Directory Structure of Linux RFS Package
You can make a RFS directory to be the top directory of this project and extract source files
from the package file using the shell command. It is also assumed that the $(TOP_DIR) also
contains the Linux kernel source directory where RFS will be applied.

shell> cd $(TOP_DIR)
shell> tar xvjf rfs-1.3.x.tar.bz2

Then, some directories such as RFS, RFS-TOOLS, etc are created under $(RFS_TOP_DIR). There
are RFS source, library and some tools. The RFS source package has the following directory
hierarchy.

Figure 2-1 Directory Structure of Linux RFS Package

 ‘rfs’ contains source files related to Robust FAT and ‘xsr’ contains source files related to
OneNAND block device driver. ‘scripts’ contains install scripts and ‘util’ contains several tools
to maintain RFS.

 fs – RFS file system module
 drivers - XSR block device driver module
 tools - Utilities to manipulate RFS
 scripts- RFS Package Installation scripts
 Include – includes header files

2.2.2 Source Files List
This section gives short description of source files listed in the ‘rfs’ and ‘xsr’ directory.
The source files in this package are listed in Figure 2-2, where *.c files and *.h files are
annotated on the ‘RFS’ source tree. Sample LLD code of OneNAND is tested with Apollon
customized board based on OMAP2420 core. You need to write your own code for other chipset.

$(RFS_TOP_DIR) fs

drivers

include

rfs

xsr core

PAM

OAM

LLD

linux

dir.c, dos.c, file.c, inode.c, inode_24.c, inode_26.c,

namei.c, super.c, fcache.c, cluster.c, code_convert.c,

log.c, log.h, log_replay.c, rfs_24.c, rfs_26.c

rfs_fs.h

rfs_fs_i.h

rfs_fs_sb.h

txsr

Figure 2-2 Linux RFS Source Files (Annotated on the Source Tree)

Here are brief descriptions about *.c files.

 $(RFS_TOP_DIR)/fs/rfs: FAT and logging for reliability
• fcache.c: FAT cache & FAT entry handling functions
• cluster.c: FAT cluster & FAT table handling functions
• code_convert.c: Dos name and Unicode name handling operations
• dir.c: Directory handling functions
• dos.c: FAT directory entry Manipulation and management operations
• file.c: File and file inode functions
• inode.c: Common inode operations
• inode_24.c: Kernel version 2.4 specific inode functions
• inode_26.c: Kernel version 2.6 specific inode functions
• log.c: Functions for logging
• log_replay.c: Functions for replaying log
• namei.c: Adaptation layer between the VFS and RFS file system for inode operations
• rfs_24.c: Kernel version 2.4 specific functions
• rfs_26.c: Kernel version 2.6 specific functions
• super.c: Super block and init functions

 $(RFS_TOP_DIR)/drives/xsr: NAND block device driver for RFS

 $(RFS_TOP_DIR)/tools/: Tools to manipulate RFS/XSR

5 Linux RFS v1.3.0 Porting Guide

6 Linux RFS v1.3.0 Porting Guide

Most of the sources are platform-independent codes except PAM. Please refer the “XSR Porting
Guide” for more detailed information. Before going into detail about RFS customization
according to target requirement, next section will explain about objects that Linux RFS will
create during make (or build) steps.

2.2.3 RFS Memory Usage
Table 2 lists the RFS static memory usage.

Table 2 RFS Static Memory Usage (in bytes)

Module TEXT DATA BSS Total

RFS 45,112 680 4 45,796

XSR 80,808 2,692 4,288 87,788

Sum 125,920 3,372 4,292 133,584

2.3 Hardware Environment

In this porting guide, OMAP2420 is used as target board to give porting example of RFS. 3 shows
hardware information about OMAP2420.

Table 3 shows hardware information about OMA2420.

Table 3 Hardware information of OMAP2420

CPU ARM1136JF-S core and TMS320C55x DSP core
Memory SRAM: 640K bytes of shared inetrnal RAM
External Memory Interface 1. General Purpose Memory Controller (GPMC)

 Up to 100MHz, NOR flash, NAND flash, SRAM, and
PSRAM asynchronous and synchronous protocols
 16-bit data, up to eight chip-selects, 128M-byte
address bus, 1G-byte total address space
2. SDRAM controller (SDRC)
 SDRAM, DDR mobile SDRAM, mobile DDR
 16- or 32-bit data, two chip-selects,
configurations up to 2G bits on each chip-select 16bit

MPU Peripheral v6 instruction set architecture (ISA), 32K-byte
instruction and 3K-byte data
64-entry instruction and 64-entry data write buffer
Vector floating-point processor
Jazelle Java accelerator

OneNAND device Select OneNAND device according to your
requirement (1.8v/3.3v)

3 Porting Linux RFS
This chapter describes porting overview, hardware configuration for OneNAND, Linux RFS
initialization and porting procedure with OMAP2420 target board.

3.1 Porting Overview
This section describes Linux RFS porting procedure briefly. The procedure is divided into 5
steps as shown in the following figure.

Hardware Configuration

Installation of Linux RFS Sources

Kernel Configurations for RFS

Building Linux Kernel and RFS Kernel
Module

PAM Configurations

Figure 3-1 Linux RFS Porting Procedure

These steps will guide you in porting RFS on your target Platform.

3.2 Porting Procedure
This section will explain you in detail about porting procedure.

3.2.1 Installation of Linux RFS Sources
The first thing you should do is to install the Linux RFS sources into the target system’s kernel
source tree. This step is very easy to fulfill. Extract Linux RFS source files from the package file
on your Linux host PC as explained in Section 2.1. Now go inside the following folder
$(TOP_DIR)/$(RFS_TOP_DIR)/scripts/. In this folder you will find file rfs_install.sh, open this
file and edit following variable in this file.

KERNEL = Set kernel path
RFS = Set RFS source top directory path
ARCH = Set the architecture type

Now run “scripts/rfs_install.sh [kernel_type]” at $(TOP_DIR)/

7 Linux RFS v1.3.0 Porting Guide

8 Linux RFS v1.3.0 Porting Guide

If you are using Linux kernel 2.4.xx specify ‘kernel type’ as 24. If you are using Linux kernel
2.6.xx specify ‘kernel type’ as 26.

Shell> cd $(TOP_DIR)
Shell> $(RFS_TOP_DIR)/scripts/rfs_install.sh 24

3.2.2 Kernel Configuration for RFS

3.2.2.1 Menu Configuration of Kernel for RFS

As shown below, you should get sub-menu in $(KERNEL_TOP_DIR) as the result of ‘make
menuconfig’. Figure 3-2 shows the general main menu of kernel configuration. Select “File
systems” menu to go on to the next step.

Figure 3-2 Main screen of Kernel menu

Figure 3-3 File system screen of Kernel menu

Figure 3-3 shows the detailed RFS configuration.
1. The first is FAT32 and long file name support
2. The second is direct I/O support. But, this feature is experimental and should not be used

in production environment.
3. The third is debugging message option

☞ NOTE

You have to execute the ‘mkrfsnod’ utility on the target for making device nodes used by XSR
block device driver. The detailed usage of this program is described in Ftools Utility Guide
document.

3.2.3 Building Linux Kernel and RFS Kernel Module
In this build step, the first thing you should do is to check the kernel make options. Following
are the make options you should check. You can confirm the following make options typing
“make menuconfig” on the shell command line.

 You should turn on the make option for “EXPERIMENTAL” kernel features in .config file.

9 Linux RFS v1.3.0 Porting Guide

10 Linux RFS v1.3.0 Porting Guide

Figure 3-4 Code maturity level

 You should set the make option for “COMPRESSED ROM FILE SYSTEM (CRAMFS)” in file system
option during make menuconfig because the root file system is managed by CRAMFS.

Figure 3-5 CRMAFS OPTION Settings

Now, you can proceed to build the kernel and the kernel modules. Before starting build process
your kernel cross compile path ‘CROSS_COMPILE = ’ must be set in
$(KERNEL_TOP_DIR)/Makefile. To build the kernel, type the following commands in sequence.

shell> cd $(KERNEL_TOP_DIR)
shell> make clean
shell> make dep
shell> make uImage

Then, the kernel image file named ‘uImage’ will be created if no error occurs. As mentioned
earlier, the RFS sources are compiled and linked as a loadable kernel module. To make the
kernel modules, do the following.

shell> make modules
shell> make modules_install

11 Linux RFS v1.3.0 Porting Guide

12 Linux RFS v1.3.0 Porting Guide

After all of these steps, you will have the kernel image ‘uImage’. For usage of OneNAND device
on your target, please refer to ftools utility guide.

3.3 Using the NLS (Native Language Support)
The FAT Filesystem can deal with filenames in native language character sets. These character
sets are stored in so-called DOS codepages. You need to include the appropriate codepage if
you want to be able to read/write these file names on DOS/Windows or other FAT partitions
correctly. It applies to the filenames only, not to the file contents.

In RFS Filesystem, you can decide to use the native language for the name by the kernel
configuration. So, if you don’t configure the NLS option, you can make only the name with 7-
bit ASCII characters.

3.3.1 Kernel Configuration for NLS
To support filenames with the native language characters, you have to set some kernel
configurations like the following:

As shown below, you should select “File systems” menu at the Main menu of ‘make
menuconfig’.

Figure 3-6 RFS Filesystem configuration for VFAT

The menu “Support NLS on RFS Filesystem” is the native language support. And if you want to
support filenames with the native language, you should select this menu as <Y>.
If you select <Y>, you can set up the default codepage at the sub-menu “Use default NLS
Codepage”.
This default codepage is used to mount the RFS Filesystem if the “codepage” mount option is
not set.

If you select <Y> for the “Support NLS on RFS Filesystem”, you should select the “Native
Language Support” menu at “File system” to open the NLS configuration like the following.

Figure 3-7 NLS(Native Language Support) configuration

And you should select the codepages like the default codepage and other codepages to be used
at the target. Then, the codepages will be compiled as built-in or module.
For example, if you set the default codepage to “cp949” for Korean, you have to select
“Codepage 949” at this menu.

☞ NOTE

If you installed the RFS code by using ‘rfs_install.sh’ script, the “Native Language Support”
option in the “File System” menu is automatically turned on when you turned on the option,
“Support NLS on RFS Filesystem”. Because that script makes some changes at the configuration
file of the Filesystem.

But if you don’t use ‘rfs_install.sh’ or “Native Language Support” option isn’t turned on, you
need to do the following:

 ► At the 2.6 kernels, you can explicitly select “Native Language Support” at the menu of
“File system” and be enable to select the proper codepage.

 ► At the 2.4 kernels, the option “Native Language Support” is automatically selected by
the Filesystem using the native language like MS-DOS, VFAT, SMB and so on. So, you have to
turn on other Filesystem like MS-DOS to use the “Native Language Support”.

When you didn’t select “FAT32 & long file name support”, you can’t find the menu about
“Support NLS on RFS Filesystem” like the following.

13 Linux RFS v1.3.0 Porting Guide

14 Linux RFS v1.3.0 Porting Guide

Figure 3-8 RFS Filesystem configuration for FAT16

If you decide to build RFS Filesystem as FAT16 type, you always make the filenames with the
native language in the 8.3 format regardless of NLS support. Why is this possible?

The NLS is used for the conversion the filenames with the native language to/from Unicode,
but the conversion doesn’t happen at the FAT16. So, FAT16 doesn’t need any codepage.

☞ NOTE

If you make filenames with the native language at FAT16 and the length of the name is longer
than the 8.3 format, the filename could be broken at the last character.

3.3.2 Mounting RFS with codepage
If you want to use RFS Filesystem supporting NLS, you should use “codepage” option to mount
RFS Filesystem like the following.

Shell> mount –t rfs /dev/stl0/3 /tmp –o codepage=cp949

This command mounts the RFS Filesystem found on ‘/dev/stl0/3’ at the directory ‘/tmp’.
If you selected the NLS support when building the kernel image for the target, the mount
option “codepage=cp949” sets the default codepage as ‘cp949’. And then RFS supports
filenames with the native language of ‘cp949’ character set. If the codepage 949 isn’t build at
the target, this command will fail.

Shell> mount –t rfs /dev/stl0/3 /tmp

This command mounts the RFS Filesystem found on ‘/dev/stl0/3’ at the directory ‘/tmp’.
If you didn’t select the NLS support when you built the kernel image, this command will
success and RFS is able to support filenames with the 7-bit ASCII characters only.

If you didn’t select the ‘FAT32 & long file name’ when you built the kernel image, this
command will success and RFS is able to support filenames with the native language in the 8.3
format.

If you selected the NLS support and the default codepage, this command will success if only
the default codepage is configured and built. For example, if the default codepage is
“codepage 437”, then RFS supports filenames with the native language of ‘cp437’ character set.

If you selected the NLS support and didn’t set the default codepage, this command will fail.

15 Linux RFS v1.3.0 Porting Guide

16 Linux RFS v1.3.0 Porting Guide

Appendix

I. Description of FAT Configuration Option

 CONFIG_RFS_FS
Description
 Configuration option for RFS

Behavioral description
 This option should be set for RFS support.
Additional notice
 None

 CONFIG_RFS_VFAT
Description

To avoid the patent problems related to Window FAT file system, RFS can be built without
codes related to Windows FAT file system.

Behavioral description
 This option can be turned off by turning on the option, “FAT32 & long file name support” in
the configuration menu. If you set it, you can use FAT16 which supports long file name and
FAT32.

Additional notice

Once RFS is compiled with this option disabled, RFS can not be mounted as FAT32. It can
only be mounted as FAT16. In addition, the features related to this option, such as a long file
name and a Unicode conversion will not be available any more.

 CONFIG_RFS_SYNC_ON_CLOSE
Description

To support the file sync operation at file close time.

Behavioral description
 The file is synchronized at close () call. When a file is opened by multiple processes, the
file is synchronized at the last close () call.

Additional notice
 None

 CONFIG_RFS_NLS
Description

To support filenames with the native language character set.

Behavioral description
 This option can be selected by turning on the option, “Support NLS on RFS Filesystem” in
the configuration menu, if only the option of CONFIG_RFS_VFAT is turned on. If you set this,
you can use the filenames with the native language character set.

Additional notice
 Once RFS is compiled with this option, RFS must be mounted with ‘codepage’ option or
compiled with the default codepage.

 CONFIG_RFS_DEFAULT_CODEPAGE
Description

This option has the name of the default codepage.

Behavioral description
 This option is valid if only the CONFIG_RFS_NLS is turned on. When the mount option
‘codepage’ of the RFS Filesystem is not set, this value can be used for mounting and for the
conversion of the filename with this character set.

Additional notice
 None

 CONFIG_RFS_FAT_DEBUG
Description

This option prints low-level debugging message for the RFS file system.

Behavioral description
 If you set it, you can choose verbose level for debugging.

Additional notice
 None

 CONFIG_RFS_FAT_DEBUG_VERBOSE
Description

This option determines the verbose level of the debugging.

Behavioral description
 You can choose the following level.

Level verbosity
0 Minimal
1 Audible
2 Loud
3 Noisy

Additional notice
 Default debugging level is 0 that won’t print anything.

 CONFIG_RFS_MAPDESTROY
Description

This option is to improve the performance by means of the stl map deletion.

Behavioral description
 This option enables RFS to use the stl map deletion. It has dependency on the STL block
device. If the STL block device is included as a static or module in kernel, it will be available.
This option enables RFS to delete mappings corresponding with clusters. It deals with
commands such as unlink or truncate.

Additional notice
 This option is selected by default and it is not configurable.

 CONFIG_RFS_IGET4
Description

The iget4() kernel interface is used under the Linux kernel version 2.4.25.

Behavioral description
 To get an inode, RFS uses a iget_locked() which is general kernel interface. But some kernel
version don’t provide a iget_locked() interface especially below the Linux kernel version 2.4.25.

17 Linux RFS v1.3.0 Porting Guide

18 Linux RFS v1.3.0 Porting Guide

This option enables RFS to use a iget4() interface instead of a iget_locked() interface. If your
kernel supports a iget_locked() interface, you can disable it.

Additional notice

For MontaVista Linux Pro 3.1, you should disable this option. For CEE 3.1, this option should
be enabled. Default is enable.

 CONFIG_RFS_VERSION
Description

This option is used for RFS version string

Behavioral description
 None

Additional notice

 CONFIG_RFS_PRE_ALLOC
Description

This option is used for advanced cluster allocation. Current version support maximum 50
numbers for pre clusters allocation.

Behavioral description
 Amount of memory used in cluster allocation will be (CONFIG_RFS_PRE_ALLOC *
cluster size)

Additional notice

	1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Architecture

	2 Prerequisites
	2.1 Host Environment
	2.2 Software Environment
	2.2.1 Directory Structure of Linux RFS Package
	2.2.2 Source Files List
	2.2.3 RFS Memory Usage

	2.3 Hardware Environment

	3 Porting Linux RFS
	3.1 Porting Overview
	3.2 Porting Procedure
	3.2.1 Installation of Linux RFS Sources
	3.2.2 Kernel Configuration for RFS
	3.2.3 Building Linux Kernel and RFS Kernel Module

	3.3 Using the NLS (Native Language Support)
	3.3.1 Kernel Configuration for NLS
	3.3.2 Mounting RFS with codepage

